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A stochastic approximation method for assigning
values to calibrators

Br1IAN ScHLAIN®

A new procedure is provided for transferring analyte
concentration values from a reference material to pro-
duction calibrators. This method is robust to calibration
curve-fitting errors and can be accomplished using only
one instrument and one set of reagents. An easily
implemented stochastic approximation algorithm itera-
tively finds the appropriate analyte level of a standard
prepared from a reference material that will yield the
same average signal response as the new production
calibrator. Alternatively, a production bulk calibrator
material can be iteratively adjusted to give the same
average signal response as some prespecified, fixed
reference standard. In either case, the outputted value
assignment of the production calibrator is the analyte
concentration of the reference standard in the final
iteration of the algorithm. Sample sizes are statistically
determined as functions of known within-run signal
response precisions and user-specified accuracy toler-
ances.

The problem of transferring the analyte concentration
value of a reference material to a new production calibra-
tor is a common manufacturing activity in the in vitro
medical diagnostic industry. Many popular approaches to
this problem, whether they use consensus values from
many laboratories, reference laboratories, or master lots,
involve fitting calibration curves to assay responses of
reference standards to determine the concentration values
of the new production calibrators, which are assayed as
unknowns (1, 2). There are at least two potential prob-
lems with this approach: Any consistent systematic error
in fitting the calibration curve is propagated to the value
assignment of the production calibrator regardless of how
many assay setups (or runs) are used, and the required
sample sizes, even with a single instrument, are direct
functions of the magnitudes of the random variabilities of
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fitted calibration curves and/or assay setups together
with the within-run variabilities. With consensus value
methods, the required sample sizes are further increased
by the variabilities among laboratories, analyzers, and
assay methods. The object of this paper is to provide a
simpler, more economical method of value assignment
that is robust to calibration curve-fitting errors and has its
required sample size driven only by the smallest compo-
nent of variability, which is the intraassay signal response
SD, rather than by the interassay or interlaboratory
sources of variabilities of recovered values, which drive
up sample sizes.

For the case in which both the production calibrators
and the reference materials have the same signal-response
curve, which is linear in analyte concentration with a zero
intercept, this problem has already been solved by the
following well known equation (1):

S
[Vt] = [Vr]§/

where

[V\] is the estimated value assignment of the new
production calibrator;

[V,] is the known concentration of the reference stan-
dard;

S, is the average signal response of the new production
calibrator; and

S, is the average signal response of the reference
standard.
Note that the above equation, which is restricted to a
single linear signal-response curve with zero intercept, is
prone to biases from nonlinearity, matrix, or specificity
effects in either of the materials (1).

A Stochastic Approximation Method of Value Assigning
Production Calibrators
This paper provides a new method of transferring analyte
concentration values from reference materials to produc-
tion calibrators. As will be shown, the accuracy of this
new method does not depend on fitted calibration curves.
The stochastic approximation method of value assign-
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ment assumes that two standards that give the same
average signal response when assayed on some specific
assay system are functionally equivalent with respect to
analyte level. Although this paper assumes that the ana-
lyte value of the reference material is known without
error, in theory the stochastic approximation method
extends to the case in which there is uncertainty in this
value. As will be explained in the Discussion, judgment on
the part of the user is required to determine when it is
sensible to extend the methodology to this case.

In this paper, there are two distinct but related ways of
using the stochastic approximation method. In the first way,
a stochastic approximation algorithm together with a stop-
ping rule iteratively finds the appropriate analyte level for a
standard prepared from a reference material that will yield
the same average signal response as the new production
calibrator, whose concentration is not precisely known at the
time of manufacture; the value assignment of the production
calibrator is then the analyte level of the reference standard
at the final iteration of the algorithm. In the second way, the
same algorithmic method is used to alter the analyte con-
centration level of the new production calibrator bulk (by
adding or diluting) so that it will yield the same average
signal response as some prespecified reference standard.
The value assignment of the altered production calibrator
bulk material in the final iteration of the algorithm is
obtained from the known analyte concentration of the fixed,
reference standard.

Because there are two aforementioned ways of using the
stochastic approximation method of value assignment, the
standard which is iteratively adjusted (whether it be pre-
pared from the reference or from calibrator bulk material)
will be denoted as the “adjusted standard”. The standard
that is not iteratively adjusted will in turn be denoted as the
“fixed standard”. The corresponding materials from which
these standards are prepared will similarly be denoted as the
fixed and adjusted materials, respectively. Which of the
standard preparations is to be iteratively adjusted by dilu-
tions and/or additions is a matter of convenience, provided
that matrix or antigen effects are not introduced in the
process of the iterative adjustment.

At each iteration of the algorithm, the fixed and ad-
justed standards are run in statistically determined num-
bers of replicates and statistically compared to determine
whether the algorithm should stop. The methodology for
determining these sample sizes will be presented later.

The following assumptions are made with the stochastic
approximation method. Both the adjusted and fixed stan-
dards can, with sufficient specificity, be assayed within the
same run on the same instrument, which can be used
reliably for value assignment. The assay measurement sys-
tem is in a state of control.

The underlying matrices and antigen species of the
fixed and adjusted materials are similar enough that
systematic differences in signal response can be assumed
to reflect only differences in analyte concentrations. (As
will be mentioned in the Discussion, there are some cases

where the user might decide to waive this latter assump-
tion.) The adjusted material has dilution and/or addition
accuracy within some appropriate analyte range; for the
case in which this latter assumption is not tenable, possi-
ble alternatives are presented in the Discussion.

The stochastic approximation algorithm for updating
the analyte concentration correction factor in the prepa-
ration of the adjusted standard is given by (3, 4):

D,
Cit+1 Ci + i Br (1)
where

i=1,2,...denotes the iteration;

¢; is the estimated concentration correction factor at the
ith iteration for the adjusted standard;

¢ is always set to zero;

D; is the estimated average difference in log signal
response units of the fixed minus the adjusted standard at
the ith iteration; and

B is the approximate slope of the log signal response vs
analyte concentration in the vicinity of the fixed standard.

Note that in Eq. 1, the term (D;/i X B) provides the
analyte concentration correction to the adjusted standard of
the current iteration and that c; , ; provides the correction to
the adjusted standard that was prepared for iteration 1. To
determine by which factor to effectively dilute or add to the
first adjusted standard of any iteration, it is necessary to
have an initial estimate of the value assignment of the
production calibrator. Based on this initial estimate, the
adjusted standard of the first iteration is prepared to approx-
imate the concentration of the fixed standard.

The factor i in Eq. 1 is necessary to guarantee that the
algorithm will converge (3). Even if B and the initial esti-
mated value assignment are poor estimates, the algorithm is
still expected to converge, but will do so more slowly
compared with having good estimates (3-5). Thus, for the
first iteration, the user should try to prepare the adjusted
standard to be close to the fixed standard. The closer the
initial adjusted standard in iteration 1 is to the fixed standard
with respect to expected signal response, the faster the
algorithm is expected to converge (5). More will be men-
tioned later on obtaining these two aforementioned initial
estimates.

A Stopping Rule for the Stochastic
Approximation Algorithm
For ease of explication, a stopping rule is first presented for
the case in which the data are not adjusted for within-assay-
run time trends. For each iteration 7 of the stochastic approx-
imation algorithm, the following limits of a two-sided 95%
confidence interval are first constructed (6):

Li=Yg — Yo — Sy N1/ ng+ 1/n, tay2™ (2)

u; = Yfl - Yai, + Sp,' \y’]. /nf,' + 1/1’1,3,' ta/z(m) (3)
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where

Yj; is the average natural log signal response of the
replicates for the fixed standard of the ith iteration;

Y,: is the average natural log signal response of the
replicates for the adjusted standard of the ith iteration;

Spi = \//[(nui = 1S, + (n; — 1)Si21/ (g + ng — 2);

Sai2 = Ej(Ym'j - Yai.)z/(nai - 1)
St = (Y — Yp)*/(ny — 1)
Y,; is the natural log signal response for the jth

replicate of the adjusted material for iteration i;

Yp; is the natural log signal response for the jth
replicate of the fixed material for iteration i;

t,,2(v;) is the upper 1 — a/2 percentile of the Student’s
t-distribution with v; degrees of freedom; the parameter «
is customarily fixed at 0.05;

v = Mg +ong — 2

n,; is the sample size for the adjusted standard at the ith
iteration; and

ng; is the sample size for the fixed standard at the ith
iteration.

The following is one possible stopping rule for the sto-
chastic approximation algorithm:

If u; = UL and [; = LL, then output the known analyte
concentration of the reference standard at the ith iteration
as the estimated value assignment of the new production
calibrator, where LL and UL are the lower and upper
manufacturing specifications, respectively, for the aver-
age log signal difference between the two standards;
otherwise, update the concentration correction factor by
Eq. 1 to prepare a new adjusted standard and proceed to
iteration i + 1.

The natural logarithmic transformation is used because
the ratio of the fixed to the adjusted standard with respect
to signal response has proven from experience to gener-
ally be a meaningful comparison metric, and the expo-
nentiated average difference in natural log signal re-
sponses (exp[Y; — Y,;]) is known to be an excellent first
order approximation of this ratio (7). Note that if & is
between —0.05 and +0.05, then exp(8) ~ 1 + 8. The
manufacturing specifications, LL and UL, can thus for prac-
tical purposes be derived from lower and upper specifica-
tions on the ratio of the fixed to the adjusted standard with
respect to average untransformed signal response. See the
Discussion for further considerations in the setting of these
specifications for the case in which there is uncertainty in the
assigned value of the reference material.

To ensure that this procedure be unbiased in the
presence of within-run time trends, the user should use a
different randomly selected sample sequence for assaying
the adjusted and fixed standards for each run of each
iteration. Random number generators such as SAS
RANUNI can be used to construct random sample se-
quences. These methods will be further elucidated later
by a hypothetical data example.

The following two assumptions, which, unless always
true, should be checked statistically, are important to the

validity of the value assignment experiments. The ad-
justed and fixed standards do not have statistically differ-
ent within-run time trends, and the ratio of the average
signal responses of the fixed to the adjusted standards
remains constant across assay runs within expected sta-
tistical variation. In the author’s consulting experience
with value assignment problems, it has always been
important to check these assumptions. Possible examples
of laboratory blunders that could lead to violations of
these assumptions are volumetric or gravimetric errors
during sample and/or reagent preparations, not allowing
sufficient time for a refrigerated sample to equilibrate to
room temperature, a contaminated calibrator vial, or an
improperly filled or mixed calibrator or reagent vial. By
using a trend-free design and multiple regression analysis
with a linear model that adjusts for time trends (§), these
aforementioned assumptions can be statistically checked
(as will later be illustrated with an actual data example).
Within-run time trends occur not infrequently with many
analyzers and can be due to assay drift and/or various
instrument effects. Further advantages of the multiple
regression method with a trend-free design are that the
random sample sequences for each iteration can be re-
placed by a single trend robust design, and the required
sample sizes for each iteration can be minimized, because
the error variance is minimized by removing the within-
run time trends.

With the multiple regression approach, the term Y, —
Y,; in Egs. 2 and 3 is replaced by D; which would be
obtained from fitting a linear model that adjusts for time
trends to the data. For a completely orthogonal design, in
which the estimated parameters are uncorrelated, D;
would correspond to Y Y,;; the pooled standard
deviation S,; in Egs. 2 and 3 is replaced by the standard
error of D; which would be outputted by a stan-
dard multiple regression program. The degrees of free-
dom v; for the critical value t,(v;) in Egs. 2 and 3 would
correspond to the df for error, which would also be
outputted by any standard multiple regression software
package. Thus, for the general case, Eqs. 2 and 3 are
replaced with:

li=D,;— SE(Di)ta/ 2(v)) (4)
u; = D; + SE(D)t,,»(vy) (5)

For determining the required sample sizes for each
iteration of the algorithm, one possible criterion is the
following: If at some iteration, the two standards are
identical with respect to their average signal responses,
there should be at least 0.95 certainty that the algorithm
will stop iterating [which occurs when the confidence
interval constructed by Egs. 2 and 3 or Egs. 4 and 5 is
completely contained by the specification interval (LL,
UL)]. The statistical methodology for determining these
required sample sizes is provided in Appendix L.
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Obtaining Initial Estimates of the Value Assignment and
Calibration Curve Slope for the Stochastic
Approximation Algorithm
The speed of the algorithm can be improved by preparing
the initial adjusted standard in iteration 1 to be close to the
fixed standard and having a good approximation to the
calibration curve slope B in the vicinity of the fixed
standard (4, 5). If the assay response curves are reason-
ably stable, B can be estimated from historical data. If
there is not excessive curvature in the assay log-response
curve in the vicinity of the fixed standard, a simple linear
approximation based on two standards, which span this

local region, will be adequate for estimating the slope.

The initial adjusted standard for iteration 1 could be
determined by first assaying a range of standards pre-
pared from the adjusted material along with the fixed
standard using a calibration curve based on (or traceable
to) the reference material. If B cannot be estimated from
historical data, a pilot experiment should be performed
with several dilutions and/or additions of the reference
material in the region of the fixed standard. Some trend-
free designs that could be used for the pilot experiment
are given in references 8 and 9.

A Hypothetical Value Assignment Example Using Random
Sample Sequences

A hypothetical data example is based on an actual value
assignment data set provided in Table 1, which was
generated using the stochastic approximation algorithm
with a trend-free design. For the hypothetical and for the
actual data examples, the fixed standard was a reference
calibrator equivalent to 1 ug/L, and the initial adjusted
standard, which was prepared from the production cali-
brator bulk material, was estimated to also have a value of
1 pg/L at the first iteration of the algorithm.

For simplicity of explication, the hypothetical data
example does not use regression analysis with a trend-
free design but supposes that the data in Table 1 were
instead generated from the random sample sequences
given in Table 2. The three random 30-sample sequences
in Table 2, which correspond to the runs in Table 1, were
generated using the SAS program given in Appendix II.

By the argument that follows, it will be shown how the
sample sizes given in Table 1 were adequate for the
hypothetical example. It was determined by examining
historical calibration curves that the lower and upper
specifications of the ratio of the fixed to the adjusted
standard with respect to the average signal response
should be 0.975 and 1.025, respectively, which is approx-
imately equivalent to a specification of +0.025 in log-
signal units. Thus, for the stopping rule, LL and UL were
set at —0.025 and +0.025, respectively. From a large
amount of historical signal-response data, the standard
deviation of the log signal response (o) was estimated to
be 0.022. The a-level for the stopping rule of the stochastic
approximation algorithm was set at 0.05. For the random
design, the df for two runs of 15 replicates for each

Table 1. Assay system data.

Iteration Iteration
1 2
Run 1 Run 1 Run 2
Time Std? signal signal signal
1 Test 2757.7 2677.1 2713.8
2 Ref 2745.7 2778.8 2814.1
3 Ref 2855.4 2738.8 2735.6
4 Test 2749.3 2745.2 2829.0
5 Ref 2836.9 2750.6 2800.4
6 Test 2736.9 2792.3 2796.9
7 Test 2851.2 2694.8 2759.2
8 Ref 2788.2 2757.2 2777.2
9 Ref 2865.7 2686.9 2811.5
10 Test 2699.3 2654.7 2824.6
11 Test 2735.3 2799.8 2781.6
12 Ref 2732.7 2755.7 2822.1
13 Test 2624.0 2689.3 2850.8
14 Ref 2750.2 2821.4 2762.8
15 Ref 2841.0 2761.9 2747.1
16 Test 2729.7 2727.2 2769.8
17 Test 2715.9 2707.4 2783.6
18 Ref 2714.1 2732.5 2772.0
19 Ref 2799.7 2799.8 2722.6
20 Test 2840.6 2819.5 2829.8
21 Ref 2934.7 2806.2 2781.8
22 Test 2799.0 2774.0 2788.7
23 Test 2755.8 2709.5 2731.5
24 Ref 2841.2 2788.4 2811.7
25 Ref 2888.1 2712.3 2752.7
26 Test 2827.7 2748.2 2732.5
27 Test 2701.7 2670.5 2686.2
28 Ref 2860.7 2696.5 2836.4
29 Test 2780.7 2598.5 2720.9
30 Ref 2836.0 2685.6 2721.5

4 Std, Standard; Ref, reference.

standard (corresponding to iteration 2 of Table 1) are
given by v = 56. If at some iteration of the algorithm, the
fixed and adjusted standards were identical, we would
have liked to have been at least 0.95 certain that the
algorithm would stop. With two runs of 15 replicates per
standard (corresponding to iteration 2 of Table 1) and
with the aforementioned values of LL, UL, o, o, and v
together with the methodology in Appendix I, it was
calculated to be at least 0.982 certain that the algorithm
would stop when the two standards were identical with
respect to average signal response. For only one run of 15
replicates per standard (corresponding to iteration 1 of
Table 1), this certainty was only guaranteed to be at least
0.699. Thus, for the hypothetical example, it can be argued
that two runs of 15 replicates per standard (or 30 repli-
cates per standard) were more than adequate, and that,
for purposes of economy, only 15 replicates per standard
were run at iteration 1.

The data results for the hypothetical example are
summarized in Table 3A. At iteration 1 of the simulated
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Table 2. Random sample sequences for simulated example.

Iteration 17 Iteration 27
Run 1 Run 1 Run 2
sample sample sample
Time sequence sequence sequence
1 Ref Test Test
2 Ref Ref Test
3 Test Test Test
4 Ref Test Ref
5 Test Test Test
6 Test Test Ref
7 Test Ref Ref
8 Ref Ref Ref
9 Ref Test Test
10 Ref Ref Test
11 Ref Ref Test
12 Ref Test Ref
13 Ref Ref Test
14 Test Ref Test
15 Test Test Test
16 Ref Ref Ref
17 Ref Test Test
18 Ref Test Ref
19 Test Ref Ref
20 Test Ref Ref
21 Ref Ref Ref
22 Test Test Ref
23 Test Ref Test
24 Ref Test Test
25 Test Ref Ref
26 Test Test Ref
27 Test Test Test
28 Test Test Test
29 Test Ref Ref
30 Ref Ref Ref

Z Ref, reference.

example, both the adjusted and unadjusted standards
were each assayed in 15 replicates as per the data in Table
1 and the supposed corresponding sample sequence in
Table 2. The difference between the two standards with

respect to the log signal was estimated to be +0.0235 with
a SE of 0.0081 (Table 3A). Using Egs. 2 and 3, the lower
and upper limits of a 95% confidence interval around this
estimate were 0.0069 and 0.0401 log signal units, respec-
tively. Because the confidence interval was not completely
contained within the specification interval, [—0.025,
+0.025], the algorithm proceeded to iteration 2.

The updated analyte concentration correction to the
adjusted standard from iteration 1 was calculated by first
solving Eq. 1 (given below), which required an estimate of
the slope of the log signal calibration curve (B) and the
estimate D; (or Yy — Y, = 0.0235; Table 3A):

+ Di
Cit1 Ci i X B .

From historical data, the slope of the calibration curve ()
in the vicinity of the fixed standard was approximated to
be —0.44 log signal units/ug/L. Substituting these values
of D; and B into Eq. 1 yielded the updated correction
factor estimate ¢, (—0.0534 ug/L). Thus, for iteration 2, the
original preparation of the adjusted standard from the
first iteration, which for purposes of the algorithm was
assumed to be 1 ug/L, was effectively diluted by the
factor 1.0564 [1/(1 png/L — 0.0534 ug/L)/1 pg/L].

For iteration 2 of the hypothetical example, both the
adjusted and fixed standards were each run in 30 repli-
cates (or 2 runs) as if the data in Table 1 had been
generated from the corresponding random sample se-
quences in Table 2. The difference between the two
standards with respect to log signal (Y, Y,,) was
estimated to be 0.0066 log signal units with a SE of 0.0045
(Table 3A). Using Egs. 2 and 3, the lower and upper limits
of a 95% confidence interval around this estimate were
—0.0024 and 0.0156 log signal units, respectively. Because
the entire confidence interval (in log signal units) was
contained between —0.025 and +0.025, the stochastic
approximation algorithm stopped iterating and outputted
1 ug/L, the analyte concentration of the reference stan-
dard, as the estimated value assignment of the new
production calibrator.

Table 3. Data summary of examples of random and trend-free design.

A. Hypothetical example with the random design

Fixed-adjusted standard

Iteration Log signal SE df
1 0.0235 0.0081 28
2 0.0066 0.0045 56

B. Data example with the trend-free design

Fixed-adjusted standard

Iteration Log signal SE df
1 0.0234 0.0079 26
2 0.0068 0.0042 53

95% confidence interval,
log signal units

LL uL
0.0069 0.0401
—0.0024 0.0156

95% confidence interval,
log signal units

95% confidence interval,
exponentiated

LL UL
0.0072 0.0396
—0.0016 0.0152

LL uL
1.0069 1.0409
0.9976 1.0157

95% confidence interval,
exponentiated

LL UL
1.0072 1.0404
0.9984 1.0153
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Although the hypothetical example with the random
design is useful for explication, in general it has certain
weaknesses: A different random sample sequence must
be constructed for each run; the experimental error can be
inflated by within-run time trends and thus drive up the
required number of replicates at each iteration; and the
important assumptions of no standard-by-time-trend in-
teractions within runs and no run-by-standard-effect in-
teractions are not statistically checked. The presence of
these interactions, which generally expresses some labo-
ratory blunder in the value assignment procedures, can be
rigorously checked using multiple regression analysis (6),
which in theory could be performed with the random
design but with less statistical efficiency compared with
using a trend-free design. Because of the aforementioned
weaknesses with the random design, the actual data
example was performed using multiple regression analy-
sis with the quadratic trend-free design given in Table 1.

A Value Assignment Example Using Multiple Regression
Analysis with a Trend-Free Design
This section assumes a familiarity with multiple regres-
sion analysis (6). Readers without this preparation may
want to skip to the next section.

An actual value assignment data set, which has inten-
tionally been made anonymous, is provided in Table 1.
These data were generated using the stochastic approxi-
mation algorithm on an in vitro medical diagnostic device
with the first and second iteration consisting of one and
two runs, respectively. To adjust the data for time trends,
a nearly orthogonal, quadratic trend-free, 30-sample se-
quence design was used with each run (Table 1). The
design was limited to a sequence of 30 by the constraints
of the instrument. The near-orthogonality property of the
sample sequence for fitting quadratic trend equations will
be discussed later in this section.

Because this assay has historically shown quadratic
time trends within assay runs, the following quadratic
model was initially fitted by least-squares multiple regres-
sion (6) to each run:

Yi=a+dx;+ Bt + Butd +yitix; + oy b7 x;
i=1,...,30, 6)

where

Y; is the log signal response of ith observation;

x; = 1 if fixed standard;

x; = 0 if adjusted standard; and

t; is the sample order.

The above model in Eq. 6 was challenged by alternative
models which permitted more complex time trends than
quadratics such as the quadratic spline model with knot
points at the 9th, 17th, and 25th time points and the linear
spline model with knot points at the 5th, 9th, 13th, 17th,
21st, and 25th time points. Neither with respect to the
root-mean-square error of the fitted equation nor with the
SE of the estimate of the &-coefficient did either of these

spline models show any improvement over the fitted
quadratic model in Eq. 6. In fact, the three models were
comparable with respect to their estimates of 8 and its SE.

An important assumption for the validity of the value
assignment is that the test and reference standards do not
have different time trends within a run, which could
make the vy, and/or vy, coefficients in Eq. 6 statistically
significant. To check this assumption, the following re-
duced model was statistically tested against the full
model in Eq. 4 using the reduction sum-of-squares F-
statistic with numerator and denominator df of 2 and 24,
respectively (6):

Yi=oz+5xi+Bl ti+Bll ti2~ (7)

None of the runs in Table 1 showed a statistically detect-
able time-trend-by-standard-type interaction effect at the
0.05-level of significance. Thus Eq. 7 was used as the final
fitted model for each run. The coefficient 6 in Eq. 7 is the
expected difference between the two standard types with
respect to log signal response, whereas the coefficients 8,
and f3;; account for quadratic time trends.

The design given in Table 1 is considered nearly
orthogonal for fitting Eq. 6 to the data, because all of the
model coefficients have design efficiencies =0.994, where
a value of 1 indicates complete orthogonality (8). The
design efficiency for the model coefficient 6 in Eq. 7,
whose estimate is used to update the concentration cor-
rection factor, is 0.9997.

The following argument was used to determine that
two runs of the trend-free design in Table 1 would be
required for each iteration. As with the hypothetical
example, the lower and upper specifications, LL and UL,
were set to —0.025 and +0.025, respectively; o was based
on the historical estimate of 0.022; for the stopping rule, «
was set at 0.05. To expand the basic quadratic trend model
given by Eq. 7 to multiple runs, the degrees of freedom v
in Eq. 11 (in Appendix I) were given by (number of runs)
X n — 4 — (number of runs — 1) X 3, where n was the
number of replicates per standard per iteration. If at some
iteration the two standards were identical with respect to
average signal response, we would want to be at least 0.95
certain that the algorithm would stop iterating. With the
aforementioned values of LL, UL, o, and « together with
the methodology in Appendix I, this probability was
calculated to be at least 0.982 for a sample size n = 30 for
each standard (or two runs per iteration). For n = 15
replicates per standard (or one run per iteration), this
probability was calculated to be at least 0.699. From these
calculations, it was concluded that two runs of the trend-
free 30-sample sequence were more than adequate for
each iteration. Although two runs of the trend-free design
were performed at iteration 2, for purposes of economy,
only one run of the trend-free design was performed at
iteration 1 (Table 1).

The results, which parallel the hypothetical example,
are given in Table 3B. Because for iteration 1 the 95%
confidence interval for the difference between the two
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standards with respect to average log signal response did
not fall within the specification interval [—0.025, +0.025],
the algorithm proceeded to iteration 2 with an updated
correction of the adjusted standard. The updated concen-
tration correction factor was calculated by substituting the
least-squares estimate of & (from fitting Eq. 7 to the
iteration 1 data) for D, and the slope estimate of —0.44 for
B into Eq. 1 to yield —0.053 ug/L as the updated concen-
tration correction factor for the adjusted standard that
was prepared from the calibrator bulk material. Thus, the
updated, adjusted standard for iteration 2 was a 1.0562
[1/(1 ug/L — 0.0532 pg/L)/1 pg/L] dilution of the
adjusted standard for iteration 1.

For iteration 2, both the new adjusted standard and the
fixed standard were each run in 30 replicates (or two runs)
using the same trend-free sample sequence that was used
in iteration 1 (Table 1). The stochastic approximation
algorithm assumes that the average difference between
the fixed and adjusted standards with respect to log signal
response is constant across runs within an iteration. Using
the following fitted model, the two runs were tested for
homogeneity with respect to the difference in log signal
response between the fixed and adjusted standards:

Y,-=a+8x,-+5,r+8mrx,-+ﬁl t[+[311t,'2+ Blrt,-
+ 911 rt12 (8)

where

r = 1if run 2 and

r = 0if run 1.

The data from iteration 2 did not statistically refute the
assumption that the average difference between the ad-
justed and fixed standards with respect to log signal was
constant across the two runs; from a two-sided t-test of
the standard-type-by-run interaction, which was output-
ted from the multiple regression program SAS REG, the
coefficient §,, was not judged to be statistically different
from zero at the 0.05-level of significance. In this example,
the coefficient §,, was properly considered a fixed (rather
than random) effect that would only be nonzero if the
experiment were performed inconsistently between the
two runs. In other applications, it might be more appro-
priate to analyze this term as a random effect using a
statistical software program such as SAS GLM. This issue
will be addressed further in the Discussion.

Having not statistically refuted the assumption that the
average difference between the adjusted and fixed stan-
dards with respect to log signal units was constant across
runs, the final iteration 2 model was then:

Yi=a+5x,-+5,1’+31ti+[311ti2+Olrti-i-011rti2
)

By way of least-squares multiple regression analysis (SAS
REG), 8 was estimated by 0.0068 log signal units with a SE
of 0.0042 (Table 3B). The lower and upper limits of a 95%
confidence interval for 8 were —0.0016 and 0.0152, respec-
tively (Table 3B). Because the entire confidence interval

was contained within the specification interval [—0.025,
0.025], the algorithm stopped and outputted 1 ug/L, the
known value of the fixed reference standard at iteration 2,
as the value assignment of the production calibrator.

Summary of the Stochastic Approximation Method of Value
Assigning Production Calibrators
Following is a sequential summary of the principal steps
of the stochastic approximation method of value assign-
ing production calibrators.
(7) Select a reference material that is compatible with the
matrix and analyte species of the production calibrator
material with respect to a specific assay system.
(b) Determine whether the production calibrator or refer-
ence material will be used to prepare the adjusted stan-
dard according to convenience and whether dilution
and/or addition accuracy in the region of the fixed
standard can be ensured.
(c) At the analyte level of the fixed standard, use historical
data to estimate the within-run log signal standard
deviation o and the slope of the log assay response curve
B, and determine the specification limits LL and UL.
(d) Prepare fixed and adjusted standards from the refer-
ence and production calibrator materials.
(e) Try to prepare the initial adjusted standard to be close
to the fixed standard; set the concentration factor C; = 0.
(f) Using the relevant assay system, assay the fixed and
adjusted standards in statistically determined replicates
(Appendix I) using a trend-free design. For the first itera-
tion, it might, for reasons of economy, be decided to run
fewer than the statistically required number of replicates.
(g) Using multiple regression analysis, test each run of
each iteration for within-time-trend-by-standard-type in-
teractions and each iteration for standard-type-by-run
interactions; if either of these statistical checks fail, trou-
bleshoot the experiment and return to steps (d) or (f) as
appropriate.
(h) Using the data from assaying the fixed and adjusted
standards, construct a 95% confidence interval around
their average difference in log signal units.
(i) Determine if the confidence interval is completely
contained within the specification interval [LL, UL]. If the
confidence interval is not contained within the specifica-
tion interval, update the concentration correction factor
according to Eq. 1 to prepare a new adjusted standard and
return to step (f); if the confidence interval is contained
within the specification interval, stop iterating and output
the value assignment of the production calibrator as the
known concentration of the reference standard for the
current iteration.

Discussion
The stochastic approximation methodology permits value
assignment to be accomplished on a single instrument
with a single set of reagents. The author has verified this
latter point on a wide variety of consulting problems
where the stochastic approximation method was success-
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fully used and implemented into manufacturing opera-
tions. With respect to setting the specifications LL and UL,
an implicit assumption here is that the ratio of two
standards with respect to average signal response does
not vary across instruments. The validity of this assump-
tion will depend on how constant the calibration curve
slope function is across instruments. Experience has
shown that for many applications, this is a reasonable
assumption. For cases in which this assumption is not
expected to hold, the user is advised to sufficiently
narrow the accuracy specification and to set it according
to the worst case (e.g., the instrument with the shallowest
slope of the log assay response curve in the vicinity of the
fixed standard).

If neither the reference nor the production calibrator
material has adequate dilution accuracy and/or addition
recovery, it might in some cases be convenient to transfer
the value of the reference material to some transfer
material that does have such accuracy and also has a
matrix and analyte species that are functionally equiva-
lent to those of the production calibrators.

If the production calibrators have dilution and/or
addition accuracy, then, in theory, only the highest (low-
est) calibrator needs to be value-assigned by way of the
stochastic approximation algorithm.

There are cases in the medical device industry in which
severe matrix effects occur with every production calibra-
tor lot. One possible strategy for this difficult problem
would be to use the stochastic approximation algorithm to
force the production calibrators to mimic specific refer-
ence standards. The resulting inaccuracies that might
necessarily occur in the production calibration curve
could be minimized by narrowing the analyte concentra-
tion mesh between calibrators.

Whether the average difference between the fixed and
adjusted standards with respect to log signal should be
considered a fixed or random effect across assay runs
depends upon the assay process. If there are factors that
affect this average difference and typically vary across
runs, then it might be more appropriate to analyze this
difference as a random effect using a mixed linear model
formulation (10) by way of some statistical software
program such as SAS GLM. An example might be with a
lyophilized material, in which new vials must be used
with each run. The random variability in this case might
enter from the volumetric step or from among-vial vari-
ability. If possible, steps should be taken to make such
sources of random variability negligible (e.g., pooling of a
statistically determined number of randomly selected
vials, using large volumes for volumetric steps, and/or
using calibrated pipettes). If the random variability of the
standard effect across assay runs cannot be made negli-
gible, this variability would need to be estimated and
entered into the sample size calculations, in which case
the sampling unit would be an assay run. (Methodology
for determining required sample sizes when the sampling
unit is an assay run and the variability is unknown is

given in reference 11.) If it can be assumed that such
random factors do not exist when the assay is performed
correctly, then the average difference should be analyzed
as a fixed effect (as was done in the data example). In the
case of the fixed-effect formulation, it is assumed that an
interaction of the standard effect with runs would only be
caused by the experiment having been performed incor-
rectly (e.g., an incorrect volumetric or gravimetric step).

For the laboratory that is interested in experimentally
validating the stochastic approximation method, the fol-
lowing is proposed. In place of the production calibrator,
a test material of known analyte concentration could be
used; the final result of the algorithm would be compared
with the known concentration of the test material. The
experiment could be repeated with various concentration
differences between the adjusted and fixed standard at
the first iteration. Care should be taken that both the
matrix and antigen species of the test and reference
materials be functionally equivalent with respect to the
specific assay system.

If a laboratory wants to compare the stochastic approx-
imation method with some value assignment method that
is based on fitting calibration curves, the following poten-
tial sources of bias should first be considered before the
experiment is performed: systematic errors in fitting
the calibration curve, errors in the value assignments of
the calibrators that are used to fit the calibration curves,
and within-run time trends. Even without systematic
sources of bias, a proper statistical comparison with a
value assignment method based on fitting calibration
curves should account for interassay and possibly among-
instrument variabilities (11).

This paper has treated the ideal case in which the analyte
value of the reference standard is known without error. In
theory, the stochastic approximation method extends to
the case in which the assigned value of the reference
material has uncertainty: The uncertainty in the value of
the reference standard is transferred to the production
calibrator value assignment. Extending the methodology
to this case is sensible, if and only if the manufacturing
specification interval, [LL, UL], can be sufficiently nar-
rowed to control the uncertainty propagated by the as-
signed value of the reference standard. If the lower and
upper uncertainty limits of the reference standard as-
signed value are known (or can be estimated), the maxi-
mum propagated uncertainty interval induced by the
prespecified values of LL and UL on the production
calibrator value assignment can be estimated using the
log signal calibration curve.

I thank Herbert Robbins for his helpful comments. I am
deeply indebted to Karl Kennedy for his tireless help with
computer programming, data analyses, and data gather-
ing, without which the computerized implementation of
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this methodology would not have been possible. I am also
grateful to William Present, who provided an industrial
test site for the early development of the enclosed meth-
odology.

Appendix I:
Sample Size Determination

One possible criterion for determining the required num-
ber of replicates for each iteration of the algorithm is that
if, at some iteration, the fixed and adjusted standards are
identical with respect to their expected signal responses,
there should be at least a 0.95 certainty that the algorithm
will stop iterating (i.e., the 95% confidence interval con-
structed by Egs. 2 and 3 or Egs. 4 and 5 will be completely
contained by the specification interval [LL, UL]). A lower
bound on this probability is calculated by the following
equation (12):

y=1-Pr{u;> UL} + Pr{l, < LL} (10)

where
Pr{u;> UL} =1 — PROBT( — t;, v;, ncu;)  (11)
Pr{l,=LL} = PROBT(t;, v;, ncly). (12)
PROBT, which can be calculated using the SAS statistical
software package among others, is the cumulative distri-
bution function of the noncentral {-distribution with v;,
degrees of freedom, and with noncentrality parameters,

ncu; and ncl; (13):

— UL

- 13

et o\1/n,+ 1/ng (13)
—LL

ncl, (14)

B o\1/ny+1/ny

o is the historical, large sample estimate of the within-
run SD of the log signal (approximately the CV of the
untransformed signal response (7)); and

t; is the upper 1 — «/2 percentile of the Student’s

t-distribution with v; degrees of freedom.
Thus, by setting y = vy, = 095and o = «, = 0.05, Egs.
10-12 can be solved for the required number of replicates
n (n,; ng) per standard per iteration. In all of the examples
of this paper, y, = 0.95 and «, = 0.05.

Critical to the validity of the sample size calculations is
an accurate estimate of o, which should be obtained with
the help of one’s local statistician. The specification limits
LL and UL should be chosen by careful study of appro-
priate historical log assay response curves in the region of
the fixed standard; specifically, the first derivative func-
tion of the fitted calibration curve function, which relates
the change in log signal response to change in analyte
concentration, should be estimated.

Appendix Il:
SAS Computer Program for Generating
Random Sample Sequences

The enclosed PC SAS program was used to generate the
random sample sequences that are given in Table II for
the hypothetical data example.
INPUTS:

seed = randomly chosen seed number that should be
changed with each execution of the computer program;

run = number of runs requiring random sample se-
quences;

n = number of samples per run (an even number).
OUTPUT (written to the output file TEMP.DAT):

jj = index for run number;

ii = sequence number (running from 1 to n/2);

num = randomly generated number between 1 and n.
PROGRAM:

filename temp ‘temp.dat’;

data a;

file temp;

seed = 126578;

run = 3;

n = 30;

m = n/2;

large = n + 500;

doj =1 to run;

=7

array nn{100} n1-n100;

dok =1tom;

nn{k} = large;

end;

doi=1tom;

i =i

start: num = ranuni(seed);
div = 1/n;

result = num/div;

mult = int(result);

if result gt mult then num = mult + 1;
flag = 0;

dok =1tom;

if num eq nn{k} then flag = 1;
end;

if flag eq 1 then go to start;

if flag eq 0 then nn{i} = num;
put jj ii num;

end;

end;
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